Finite element solution of a hyperbolic-parabolic problem
Applications of Mathematics, Tome 39 (1994) no. 3, pp. 215-239
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Existence and finite element approximation of a hyperbolic-parabolic problem is studied. The original two-dimensional domain is approximated by a polygonal one (external approximations). The time discretization is obtained using Euler’s backward formula (Rothe’s method). Under certain smoothing assumptions on the data (see (2.6), (2.7)) the existence and uniqueness of the solution and the convergence of Rothe’s functions in the space $C(\overline{I},V)$ is proved.
DOI :
10.21136/AM.1994.134254
Classification :
65M12, 65M20, 65M60, 65N30
Keywords: Rothe's method; finite elements.; Euler’s backward formula; linear parabolic or hyperbolic equations; convergence
Keywords: Rothe's method; finite elements.; Euler’s backward formula; linear parabolic or hyperbolic equations; convergence
@article{10_21136_AM_1994_134254, author = {Hlavi\v{c}ka, Rudolf}, title = {Finite element solution of a hyperbolic-parabolic problem}, journal = {Applications of Mathematics}, pages = {215--239}, publisher = {mathdoc}, volume = {39}, number = {3}, year = {1994}, doi = {10.21136/AM.1994.134254}, mrnumber = {1273634}, zbl = {0812.65087}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134254/} }
TY - JOUR AU - Hlavička, Rudolf TI - Finite element solution of a hyperbolic-parabolic problem JO - Applications of Mathematics PY - 1994 SP - 215 EP - 239 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134254/ DO - 10.21136/AM.1994.134254 LA - en ID - 10_21136_AM_1994_134254 ER -
Hlavička, Rudolf. Finite element solution of a hyperbolic-parabolic problem. Applications of Mathematics, Tome 39 (1994) no. 3, pp. 215-239. doi: 10.21136/AM.1994.134254
Cité par Sources :