Spectral methods for singular perturbation problems
Applications of Mathematics, Tome 39 (1994) no. 3, pp. 161-188
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.
DOI :
10.21136/AM.1994.134251
Classification :
35B25, 35J25, 65F10, 65N12, 65N35, 65N55
Keywords: spectral methods; singular perturbation; stabilization; domain decomposition; iterative solver; multigrid method
Keywords: spectral methods; singular perturbation; stabilization; domain decomposition; iterative solver; multigrid method
@article{10_21136_AM_1994_134251,
author = {Heinrichs, Wilhelm},
title = {Spectral methods for singular perturbation problems},
journal = {Applications of Mathematics},
pages = {161--188},
publisher = {mathdoc},
volume = {39},
number = {3},
year = {1994},
doi = {10.21136/AM.1994.134251},
mrnumber = {1273631},
zbl = {0812.65100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134251/}
}
TY - JOUR AU - Heinrichs, Wilhelm TI - Spectral methods for singular perturbation problems JO - Applications of Mathematics PY - 1994 SP - 161 EP - 188 VL - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1994.134251/ DO - 10.21136/AM.1994.134251 LA - en ID - 10_21136_AM_1994_134251 ER -
Heinrichs, Wilhelm. Spectral methods for singular perturbation problems. Applications of Mathematics, Tome 39 (1994) no. 3, pp. 161-188. doi: 10.21136/AM.1994.134251
Cité par Sources :