Variational problems in domains with cusp points
Applications of Mathematics, Tome 38 (1993) no. 4-5, pp. 381-403
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The finite element analysis of linear elliptic problems in two-dimensional domains with cusp points (turning points) is presented. This analysis needs on one side a generalization of results concerning the existence and uniqueness of the solution of a constinuous elliptic variational problem in a domain the boundary of which is Lipschitz continuous and on the other side a presentation of a new finite element interpolation theorem and other new devices.
DOI :
10.21136/AM.1993.104561
Classification :
35J20, 35J25, 65N30
Keywords: finite element method; nonlipschitz boundary; cusp points (turning points); maximum angle condition; minimum angle condition; linear elliptic problems
Keywords: finite element method; nonlipschitz boundary; cusp points (turning points); maximum angle condition; minimum angle condition; linear elliptic problems
@article{10_21136_AM_1993_104561, author = {\v{Z}en{\'\i}\v{s}ek, Alexander}, title = {Variational problems in domains with cusp points}, journal = {Applications of Mathematics}, pages = {381--403}, publisher = {mathdoc}, volume = {38}, number = {4-5}, year = {1993}, doi = {10.21136/AM.1993.104561}, mrnumber = {1228514}, zbl = {0790.65094}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104561/} }
TY - JOUR AU - Ženíšek, Alexander TI - Variational problems in domains with cusp points JO - Applications of Mathematics PY - 1993 SP - 381 EP - 403 VL - 38 IS - 4-5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104561/ DO - 10.21136/AM.1993.104561 LA - en ID - 10_21136_AM_1993_104561 ER -
Ženíšek, Alexander. Variational problems in domains with cusp points. Applications of Mathematics, Tome 38 (1993) no. 4-5, pp. 381-403. doi: 10.21136/AM.1993.104561
Cité par Sources :