A global analysis of Newton iterations for determining turning points
Applications of Mathematics, Tome 38 (1993) no. 4-5, pp. 323-360
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a $bifurcation singularity$ (i.e., as a $degenerate$ turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship between the scenario and the actual performance of Newton method is studied. Both theoretical and experimental arguments are presented in order to quaetion the claim that a particular bifurcation singularity $organiyes$ the Newton method assuming small parameter perturbations.
DOI :
10.21136/AM.1993.104559
Classification :
37G99, 58C15, 65H17, 65H20
Keywords: detection of turning points; Newton method; Newton flow; basins of attraction; qualitative analysis; normal forms of the flow; global convergence; singularity theory; bifurcation singularity; imperfect bifurcation
Keywords: detection of turning points; Newton method; Newton flow; basins of attraction; qualitative analysis; normal forms of the flow; global convergence; singularity theory; bifurcation singularity; imperfect bifurcation
@article{10_21136_AM_1993_104559, author = {Janovsk\'y, Vladim{\'\i}r and Seige, Viktor}, title = {A global analysis of {Newton} iterations for determining turning points}, journal = {Applications of Mathematics}, pages = {323--360}, publisher = {mathdoc}, volume = {38}, number = {4-5}, year = {1993}, doi = {10.21136/AM.1993.104559}, mrnumber = {1228512}, zbl = {0806.65052}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104559/} }
TY - JOUR AU - Janovský, Vladimír AU - Seige, Viktor TI - A global analysis of Newton iterations for determining turning points JO - Applications of Mathematics PY - 1993 SP - 323 EP - 360 VL - 38 IS - 4-5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104559/ DO - 10.21136/AM.1993.104559 LA - en ID - 10_21136_AM_1993_104559 ER -
%0 Journal Article %A Janovský, Vladimír %A Seige, Viktor %T A global analysis of Newton iterations for determining turning points %J Applications of Mathematics %D 1993 %P 323-360 %V 38 %N 4-5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104559/ %R 10.21136/AM.1993.104559 %G en %F 10_21136_AM_1993_104559
Janovský, Vladimír; Seige, Viktor. A global analysis of Newton iterations for determining turning points. Applications of Mathematics, Tome 38 (1993) no. 4-5, pp. 323-360. doi: 10.21136/AM.1993.104559
Cité par Sources :