An algebraic construction of discrete wavelet transforms
Applications of Mathematics, Tome 38 (1993) no. 3, pp. 169-193
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matrices which can be built up from small matrix blocks satisfying certain conditions. A generalization of the finite support Daubechies wavelets is discussed and some special cases promising more rapid signal reduction are derived.
DOI :
10.21136/AM.1993.104545
Classification :
15A04, 42C15, 65F25, 65F30, 65T99
Keywords: orthogonal transform; wavelet; pyramidal algorithm; discrete wavelets; banded orthogonal matrices; orthogonal wavelets; signal reduction
Keywords: orthogonal transform; wavelet; pyramidal algorithm; discrete wavelets; banded orthogonal matrices; orthogonal wavelets; signal reduction
@article{10_21136_AM_1993_104545,
author = {Kautsk\'y, Jaroslav},
title = {An algebraic construction of discrete wavelet transforms},
journal = {Applications of Mathematics},
pages = {169--193},
publisher = {mathdoc},
volume = {38},
number = {3},
year = {1993},
doi = {10.21136/AM.1993.104545},
mrnumber = {1218024},
zbl = {0782.65061},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/}
}
TY - JOUR AU - Kautský, Jaroslav TI - An algebraic construction of discrete wavelet transforms JO - Applications of Mathematics PY - 1993 SP - 169 EP - 193 VL - 38 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1993.104545/ DO - 10.21136/AM.1993.104545 LA - en ID - 10_21136_AM_1993_104545 ER -
Kautský, Jaroslav. An algebraic construction of discrete wavelet transforms. Applications of Mathematics, Tome 38 (1993) no. 3, pp. 169-193. doi: 10.21136/AM.1993.104545
Cité par Sources :