On mean value in $F$-quantum spaces
Applications of Mathematics, Tome 35 (1990) no. 3, pp. 209-214
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper deals with a new mathematical model for quantum mechanics based on the fuzzy set theory [1]. The indefinite integral of observables is defined and some basic properties of the integral are examined.
DOI :
10.21136/AM.1990.104404
Classification :
03E72, 03G12, 04A72, 60A99, 81C20, 81P10
Keywords: quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables
Keywords: quantum mechanics; observables; states; probability; fuzzy sets; $F$-quantum space; indefinite integral of observables
@article{10_21136_AM_1990_104404,
author = {Rie\v{c}an, Beloslav},
title = {On mean value in $F$-quantum spaces},
journal = {Applications of Mathematics},
pages = {209--214},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {1990},
doi = {10.21136/AM.1990.104404},
mrnumber = {1052741},
zbl = {0719.60002},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104404/}
}
Riečan, Beloslav. On mean value in $F$-quantum spaces. Applications of Mathematics, Tome 35 (1990) no. 3, pp. 209-214. doi: 10.21136/AM.1990.104404
Cité par Sources :