Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 35 (1990) no. 3, pp. 184-191
    
  
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty$ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.21136/AM.1990.104402
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35B35, 35B45, 35B65, 35K45, 35K55, 73C50, 73D35, 74B20
Keywords: invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation
                    
                    
                    
                  
                
                
                Keywords: invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation
@article{10_21136_AM_1990_104402,
     author = {Feireisl, Eduard},
     title = {Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity},
     journal = {Applications of Mathematics},
     pages = {184--191},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {1990},
     doi = {10.21136/AM.1990.104402},
     mrnumber = {1052739},
     zbl = {0709.73013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104402/}
}
                      
                      
                    TY - JOUR AU - Feireisl, Eduard TI - Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity JO - Applications of Mathematics PY - 1990 SP - 184 EP - 191 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104402/ DO - 10.21136/AM.1990.104402 LA - en ID - 10_21136_AM_1990_104402 ER -
%0 Journal Article %A Feireisl, Eduard %T Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity %J Applications of Mathematics %D 1990 %P 184-191 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104402/ %R 10.21136/AM.1990.104402 %G en %F 10_21136_AM_1990_104402
Feireisl, Eduard. Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity. Applications of Mathematics, Tome 35 (1990) no. 3, pp. 184-191. doi: 10.21136/AM.1990.104402
Cité par Sources :
