Iterative solution of eigenvalue problems for normal operators
Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We will discuss Kellogg's iterations in eigenvalue problems for normal operators. A certain generalisation of the convergence theorem is shown.
DOI :
10.21136/AM.1990.104397
Classification :
47A75, 47B15, 49G20, 65J10
Keywords: eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
Keywords: eigenvalue problem; normal operator; Kellogg's iteration; Hilbert space; eigenvector
@article{10_21136_AM_1990_104397,
author = {Kojeck\'y, Tom\'a\v{s}},
title = {Iterative solution of eigenvalue problems for normal operators},
journal = {Applications of Mathematics},
pages = {158--161},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {1990},
doi = {10.21136/AM.1990.104397},
mrnumber = {1042851},
zbl = {0708.65055},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104397/}
}
TY - JOUR AU - Kojecký, Tomáš TI - Iterative solution of eigenvalue problems for normal operators JO - Applications of Mathematics PY - 1990 SP - 158 EP - 161 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1990.104397/ DO - 10.21136/AM.1990.104397 LA - en ID - 10_21136_AM_1990_104397 ER -
Kojecký, Tomáš. Iterative solution of eigenvalue problems for normal operators. Applications of Mathematics, Tome 35 (1990) no. 2, pp. 158-161. doi: 10.21136/AM.1990.104397
Cité par Sources :