Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 34 (1989) no. 6, pp. 439-448
    
  
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              The Rothe-Galerkin method is used for discretization. The rate of convergence in $C(I, L_p(G))$ for the approximate solution of a quasilinear parabolic equation with a Volterra operator on the right-hand side is established.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.21136/AM.1989.104374
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35K22, 45K05, 45L05, 49K22, 65M15, 65M20, 65R20
Keywords: error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method
                    
                    
                    
                  
                
                
                Keywords: error estimate; Rothe’s method; semidiscretization in time; quasilinear parabolic Volterra integro-differential equation; rate of convergence; galerkin's method
@article{10_21136_AM_1989_104374,
     author = {Slodi\v{c}ka, Mari\'an},
     title = {Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space},
     journal = {Applications of Mathematics},
     pages = {439--448},
     publisher = {mathdoc},
     volume = {34},
     number = {6},
     year = {1989},
     doi = {10.21136/AM.1989.104374},
     mrnumber = {1026508},
     zbl = {0695.65087},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104374/}
}
                      
                      
                    TY - JOUR AU - Slodička, Marián TI - Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space JO - Applications of Mathematics PY - 1989 SP - 439 EP - 448 VL - 34 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104374/ DO - 10.21136/AM.1989.104374 LA - en ID - 10_21136_AM_1989_104374 ER -
%0 Journal Article %A Slodička, Marián %T Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space %J Applications of Mathematics %D 1989 %P 439-448 %V 34 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1989.104374/ %R 10.21136/AM.1989.104374 %G en %F 10_21136_AM_1989_104374
Slodička, Marián. Error estimate of approximate solution for a quasilinear parabolic integrodifferential equation in the $L_p$-space. Applications of Mathematics, Tome 34 (1989) no. 6, pp. 439-448. doi: 10.21136/AM.1989.104374
Cité par Sources :