A fast iteration for uniform approximation
Applications of Mathematics, Tome 33 (1988) no. 4, pp. 269-276
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper gives such an iterative method for special Chebyshev approxiamtions that its order of convergence is $\geq 2$. Somewhat comparable results are found in [1] and [2], based on another idea.
DOI :
10.21136/AM.1988.104308
Classification :
41A50, 49D35, 65D15
Keywords: Chebyshev system; extremal points; iterative algorithm; Chebyshev approximations; numerical examples; $Q$-order of a convergent iterative method
Keywords: Chebyshev system; extremal points; iterative algorithm; Chebyshev approximations; numerical examples; $Q$-order of a convergent iterative method
@article{10_21136_AM_1988_104308,
author = {K\'alovics, Ferenc},
title = {A fast iteration for uniform approximation},
journal = {Applications of Mathematics},
pages = {269--276},
publisher = {mathdoc},
volume = {33},
number = {4},
year = {1988},
doi = {10.21136/AM.1988.104308},
mrnumber = {0949248},
zbl = {0664.65013},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104308/}
}
TY - JOUR AU - Kálovics, Ferenc TI - A fast iteration for uniform approximation JO - Applications of Mathematics PY - 1988 SP - 269 EP - 276 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104308/ DO - 10.21136/AM.1988.104308 LA - en ID - 10_21136_AM_1988_104308 ER -
Kálovics, Ferenc. A fast iteration for uniform approximation. Applications of Mathematics, Tome 33 (1988) no. 4, pp. 269-276. doi: 10.21136/AM.1988.104308
Cité par Sources :