A monotonicity method for solving hyperbolic problems with hysteresis
Applications of Mathematics, Tome 33 (1988) no. 3, pp. 197-203
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A version of the Minty-Browder method is used for proving the existence and uniqueness of a weak $\omega$-periodic solution to the equation $u_{tt}\rightarrow \text {div} F(\text {grad } u)= g$ in a bounded domain $\Omega \subset \bold R^N$ with the boundary condition $u=0$ on $\delta \Omega$, where $g$ is a given (generalized) $\omega$-periodic function and $F$ is the Ishlinskii hysteresis operator.
DOI :
10.21136/AM.1988.104302
Classification :
35B10, 35B40, 35L70, 74H45, 74H99
Keywords: quasilinear; method of Minty-Browder type; existence; uniqueness; weak $\omega$-periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; Ishlinskii hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses
Keywords: quasilinear; method of Minty-Browder type; existence; uniqueness; weak $\omega$-periodic solution; vibrating processes; elasto-plastic solids; ferromagnetics; Ishlinskii hysteresis operator; finite speed of propagation; sharp estimates; hysteresis energy losses
@article{10_21136_AM_1988_104302,
author = {Krej\v{c}{\'\i}, Pavel},
title = {A monotonicity method for solving hyperbolic problems with hysteresis},
journal = {Applications of Mathematics},
pages = {197--203},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {1988},
doi = {10.21136/AM.1988.104302},
mrnumber = {0944783},
zbl = {0668.35065},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104302/}
}
TY - JOUR AU - Krejčí, Pavel TI - A monotonicity method for solving hyperbolic problems with hysteresis JO - Applications of Mathematics PY - 1988 SP - 197 EP - 203 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104302/ DO - 10.21136/AM.1988.104302 LA - en ID - 10_21136_AM_1988_104302 ER -
%0 Journal Article %A Krejčí, Pavel %T A monotonicity method for solving hyperbolic problems with hysteresis %J Applications of Mathematics %D 1988 %P 197-203 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1988.104302/ %R 10.21136/AM.1988.104302 %G en %F 10_21136_AM_1988_104302
Krejčí, Pavel. A monotonicity method for solving hyperbolic problems with hysteresis. Applications of Mathematics, Tome 33 (1988) no. 3, pp. 197-203. doi: 10.21136/AM.1988.104302
Cité par Sources :