An algorithm for biparabolic spline
Applications of Mathematics, Tome 32 (1987) no. 5, pp. 401-413
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms.
DOI :
10.21136/AM.1987.104270
Classification :
41A15, 41A63, 65D05, 65D07
Keywords: surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms
Keywords: surface approximations; two-dimensional parabolic interpolation spline; interpolation biparabolic spline; local parameters; parabolic spline algorithms
@article{10_21136_AM_1987_104270,
author = {Kobza, Ji\v{r}{\'\i}},
title = {An algorithm for biparabolic spline},
journal = {Applications of Mathematics},
pages = {401--413},
publisher = {mathdoc},
volume = {32},
number = {5},
year = {1987},
doi = {10.21136/AM.1987.104270},
mrnumber = {0909546},
zbl = {0635.65006},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1987.104270/}
}
Kobza, Jiří. An algorithm for biparabolic spline. Applications of Mathematics, Tome 32 (1987) no. 5, pp. 401-413. doi: 10.21136/AM.1987.104270
Cité par Sources :