Convergence of $L_p$-norms of a matrix
Applications of Mathematics, Tome 30 (1985) no. 5, pp. 351-360
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
a recurrence relation for computing the $L_p$-norms of an Hermitian matrix is derived and an expression giving approximately the number of eigenvalues which in absolute value are equal to the spectral radius is determined. Using the $L_p$-norms for the approximation of the spectral radius of an Hermitian matrix an a priori and a posteriori bounds for the error are obtained. Some properties of the a posteriori bound are discussed.
DOI :
10.21136/AM.1985.104162
Classification :
15A12, 15A42, 15A60, 65F15, 65F35
Keywords: convergence; $L_p$-norms; Hermitian matrix; spectral radius
Keywords: convergence; $L_p$-norms; Hermitian matrix; spectral radius
@article{10_21136_AM_1985_104162,
author = {Stavinoha, Pavel},
title = {Convergence of $L_p$-norms of a matrix},
journal = {Applications of Mathematics},
pages = {351--360},
publisher = {mathdoc},
volume = {30},
number = {5},
year = {1985},
doi = {10.21136/AM.1985.104162},
mrnumber = {0806832},
zbl = {0609.65024},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1985.104162/}
}
TY - JOUR AU - Stavinoha, Pavel TI - Convergence of $L_p$-norms of a matrix JO - Applications of Mathematics PY - 1985 SP - 351 EP - 360 VL - 30 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1985.104162/ DO - 10.21136/AM.1985.104162 LA - en ID - 10_21136_AM_1985_104162 ER -
Stavinoha, Pavel. Convergence of $L_p$-norms of a matrix. Applications of Mathematics, Tome 30 (1985) no. 5, pp. 351-360. doi: 10.21136/AM.1985.104162
Cité par Sources :