Convergence of extrapolation coefficients
Applications of Mathematics, Tome 29 (1984) no. 2, pp. 114-133
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $x_{k+1}=Tx_k+b$ be an iterative process for solving the operator equation $x=Tx+b$ in Hilbert space $X$. Let the sequence $\{x_k\}^\infty _{k=o}$ formed by the above described iterative process be convergent for some initial approximation $x_o$ with a limit $x^*=Tx^*+b$. For given $l>1,m_0,m_1,\dots ,m_l$ let us define a new sequence $\{y_k\}^\infty _{k=m_1}$ by the formula $y_k=\alpha^{(k)}_0x_k+\alpha^{(k)}_1x_{k-m_1}+\ldots +\alpha^{(k)}_lx_{k-m_l}$, where $\alpha^{(k)}_i$ are obtained by solving a minimization problem for a given functional.
In this paper convergence properties of $\alpha^{(k)}_i$ are investigated and on the basis of the results thus obtainded it is proved that $\lim_{k\rightarrow \infty} \left\|x^*-y_k\right\|/\left\|x^*-x_k\right\|^p=0$ for some $p\geq 1$.
DOI :
10.21136/AM.1984.104075
Classification :
47A50, 65J10
Keywords: iterative methods; convergence acceleration; Hilbert space
Keywords: iterative methods; convergence acceleration; Hilbert space
@article{10_21136_AM_1984_104075,
author = {Z{\'\i}tko, Jan},
title = {Convergence of extrapolation coefficients},
journal = {Applications of Mathematics},
pages = {114--133},
publisher = {mathdoc},
volume = {29},
number = {2},
year = {1984},
doi = {10.21136/AM.1984.104075},
mrnumber = {0738497},
zbl = {0577.65044},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1984.104075/}
}
Zítko, Jan. Convergence of extrapolation coefficients. Applications of Mathematics, Tome 29 (1984) no. 2, pp. 114-133. doi: 10.21136/AM.1984.104075
Cité par Sources :