On convergence of homogeneous Markov chains
Applications of Mathematics, Tome 28 (1983) no. 2, pp. 116-119
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $p_t$ be a vector of absolute distributions of probabilities in an irreducible aperiodic homogeneous Markov chain with a finite state space. Professor Alladi Ramakrishnan conjectured the following strict inequality for norms of differences $\left\|p_{t+2}-p_{t+1}\right\|\left\|p_{t+1}-p_t\right\|$. In the paper, a necessary and sufficient condition for the validity of this inequality is proved, which may be useful in investigating the character of convergence of distributions in Markov chains.
@article{10_21136_AM_1983_104012,
author = {Kratochv{\'\i}l, Petr},
title = {On convergence of homogeneous {Markov} chains},
journal = {Applications of Mathematics},
pages = {116--119},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {1983},
doi = {10.21136/AM.1983.104012},
mrnumber = {0695185},
zbl = {0511.60065},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/}
}
TY - JOUR AU - Kratochvíl, Petr TI - On convergence of homogeneous Markov chains JO - Applications of Mathematics PY - 1983 SP - 116 EP - 119 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104012/ DO - 10.21136/AM.1983.104012 LA - en ID - 10_21136_AM_1983_104012 ER -
Kratochvíl, Petr. On convergence of homogeneous Markov chains. Applications of Mathematics, Tome 28 (1983) no. 2, pp. 116-119. doi: 10.21136/AM.1983.104012
Cité par Sources :