On periodic solution of a nonlinear beam equation
Applications of Mathematics, Tome 28 (1983) no. 2, pp. 108-115
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
the existence of an $\omega$-periodic solution of the equation $\frac {\partial^2u}{\partial t^2} + \alpha \frac {\partial^4u} {\partial x^4} + \gamma \frac {\partial^5u}{\partial x^4\partial t} - \tilde{\gamma} \frac {\partial^3u}{\partial x^2\partial t} + \delta \frac {\partial u}{\partial t} - \left[\beta + \aleph\int^n_0{\left(\frac {\partial u}{\partial x}\right)}^2 (\cdot,\xi)d\xi + \sigma \int^n_0 \frac {\partial^2u}{\partial x \partial t} (\cdot,\xi) \frac {\partial u}{\partial x}(\cdot,\xi)d \xi \right] \frac {\partial^2u}{\partial x^2}=f$ sarisfying the boundary conditions $u(t,0)=u(t,\pi)=\frac{\partial^2u}{\partial x^2}\left(t,0\right)=\frac{\partial^2u}{\partial x^2}\left(t,\pi\right)=0$ is proved for every $\omega$-periodic function $f\in C\left(\left[0,\omega\right],L_2\right)$.
DOI :
10.21136/AM.1983.104011
Classification :
35B10, 35G30, 45K05, 47A10, 73K12, 74K10
Keywords: periodic solution; nonlinear beam equation; existence
Keywords: periodic solution; nonlinear beam equation; existence
@article{10_21136_AM_1983_104011,
author = {Kop\'a\v{c}kov\'a, Marie},
title = {On periodic solution of a nonlinear beam equation},
journal = {Applications of Mathematics},
pages = {108--115},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {1983},
doi = {10.21136/AM.1983.104011},
mrnumber = {0695184},
zbl = {0533.35003},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104011/}
}
TY - JOUR AU - Kopáčková, Marie TI - On periodic solution of a nonlinear beam equation JO - Applications of Mathematics PY - 1983 SP - 108 EP - 115 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1983.104011/ DO - 10.21136/AM.1983.104011 LA - en ID - 10_21136_AM_1983_104011 ER -
Kopáčková, Marie. On periodic solution of a nonlinear beam equation. Applications of Mathematics, Tome 28 (1983) no. 2, pp. 108-115. doi: 10.21136/AM.1983.104011
Cité par Sources :