An imperfect conjugate gradient algorithm
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 27 (1982) no. 6, pp. 426-432
    
  
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              A new biorthogonalization algorithm is defined which does not depend on the step-size used. The algorithm is suggested so as to minimize the total error after $n$ steps if imperfect steps are used. The majority of conjugate gradient algorithms are sensitive to the exactness of the line searches and this phenomenon may destroy the global efficiency of these algorithms.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.21136/AM.1982.103989
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
65F10, 65K05, 90C25
Keywords: imperfect conjugate gradient algorithm; symmetric, positive definite matrix; biorthogonalization; line searches; global efficiency
                    
                    
                    
                  
                
                
                Keywords: imperfect conjugate gradient algorithm; symmetric, positive definite matrix; biorthogonalization; line searches; global efficiency
@article{10_21136_AM_1982_103989,
     author = {Sloboda, Fridrich},
     title = {An imperfect conjugate gradient algorithm},
     journal = {Applications of Mathematics},
     pages = {426--432},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {1982},
     doi = {10.21136/AM.1982.103989},
     mrnumber = {0678112},
     zbl = {0503.65017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103989/}
}
                      
                      
                    TY - JOUR AU - Sloboda, Fridrich TI - An imperfect conjugate gradient algorithm JO - Applications of Mathematics PY - 1982 SP - 426 EP - 432 VL - 27 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103989/ DO - 10.21136/AM.1982.103989 LA - en ID - 10_21136_AM_1982_103989 ER -
Sloboda, Fridrich. An imperfect conjugate gradient algorithm. Applications of Mathematics, Tome 27 (1982) no. 6, pp. 426-432. doi: 10.21136/AM.1982.103989
Cité par Sources :