On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$
Applications of Mathematics, Tome 27 (1982) no. 6, pp. 417-425
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The contents of the paper is concerned with the two-sample problem where $F_m(x)$ and $G_n(x)$ are two empirical distribution functions. The difference $F_m(x)-G_n(x)$ changes only at an $x_i, i=1,2,\ldots, m+n$, corresponding to one of the observations. Let $R^+_{mn}(j)$ denote the subscript $i$ for which $F_m(x_i)-G_n(x_i)$ achieves its maximum value $D^+_{mn}$ for the $j$th time $(j=1,2,\ldots)$. The paper deals with the probabilities for $R^+_{mn}(j)$ and for the vector $(D^+_{mn}, R^+_{mn}(j))$ under $H_0 : F=G$, thus generalizing the results of Steck-Simmons (1973). These results have been derived by applying the random walk model.
DOI :
10.21136/AM.1982.103988
Classification :
62E15, 62G10, 62G30
Keywords: points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model
Keywords: points of maximal deviation; two-sample Smirnov statistic; empirical distribution functions; joint distribution; random walk model
@article{10_21136_AM_1982_103988,
author = {Saran, Jagdish and Sen, Kanwar},
title = {On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$},
journal = {Applications of Mathematics},
pages = {417--425},
publisher = {mathdoc},
volume = {27},
number = {6},
year = {1982},
doi = {10.21136/AM.1982.103988},
mrnumber = {0678111},
zbl = {0514.62025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103988/}
}
TY - JOUR
AU - Saran, Jagdish
AU - Sen, Kanwar
TI - On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$
JO - Applications of Mathematics
PY - 1982
SP - 417
EP - 425
VL - 27
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103988/
DO - 10.21136/AM.1982.103988
LA - en
ID - 10_21136_AM_1982_103988
ER -
%0 Journal Article
%A Saran, Jagdish
%A Sen, Kanwar
%T On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$
%J Applications of Mathematics
%D 1982
%P 417-425
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.21136/AM.1982.103988/
%R 10.21136/AM.1982.103988
%G en
%F 10_21136_AM_1982_103988
Saran, Jagdish; Sen, Kanwar. On the distributions of $R^+_{mn}(j)$ and $(D^+_{mn}, R^+_{mn}(j))$. Applications of Mathematics, Tome 27 (1982) no. 6, pp. 417-425. doi: 10.21136/AM.1982.103988
Cité par Sources :