Overimplicit multistep methods
Applications of Mathematics, Tome 18 (1973) no. 6, pp. 399-421
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The paper is concerned with the numerical solution of ordinary differential equations by a new class of methods called overimplicit multistep methods. The effort is devoted to the study of the convergence and $A$-stability of the introduced methods. $A$-stable formulae of arbitrarily high orders are shown to exist in this new class. This implies the efficiency of using these methods for stiff problems.
@article{10_21136_AM_1973_103497,
author = {Pr\'ager, Milan and Taufer, Ji\v{r}{\'\i} and Vit\'asek, Emil},
title = {Overimplicit multistep methods},
journal = {Applications of Mathematics},
pages = {399--421},
publisher = {mathdoc},
volume = {18},
number = {6},
year = {1973},
doi = {10.21136/AM.1973.103497},
mrnumber = {0366041},
zbl = {0298.65052},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103497/}
}
TY - JOUR AU - Práger, Milan AU - Taufer, Jiří AU - Vitásek, Emil TI - Overimplicit multistep methods JO - Applications of Mathematics PY - 1973 SP - 399 EP - 421 VL - 18 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103497/ DO - 10.21136/AM.1973.103497 LA - en ID - 10_21136_AM_1973_103497 ER -
Práger, Milan; Taufer, Jiří; Vitásek, Emil. Overimplicit multistep methods. Applications of Mathematics, Tome 18 (1973) no. 6, pp. 399-421. doi: 10.21136/AM.1973.103497
Cité par Sources :