A chain of inequalities for some types of multivariate distributions, with nine special cases
Applications of Mathematics, Tome 18 (1973) no. 2, pp. 110-118
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Generalizing the result by Y. L. Tong, a chain of inequalities for probabilities in some types of multivariate distributions is proved. These inequalities embrace a large number of interesting special cases. Nine illustrations are given: cases of multivariate equicorrelated normal, $t,\chi^2$, Poisson, exponential distributions, normal and rank statistics for comparing many treatments with one control, order statistics used in estimating quantiles, and characteristic roots of covariance matrices in certain multiple sampling.
@article{10_21136_AM_1973_103457,
author = {\v{S}id\'ak, Zbyn\v{e}k},
title = {A chain of inequalities for some types of multivariate distributions, with nine special cases},
journal = {Applications of Mathematics},
pages = {110--118},
publisher = {mathdoc},
volume = {18},
number = {2},
year = {1973},
doi = {10.21136/AM.1973.103457},
mrnumber = {0315842},
zbl = {0261.62042},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103457/}
}
TY - JOUR AU - Šidák, Zbyněk TI - A chain of inequalities for some types of multivariate distributions, with nine special cases JO - Applications of Mathematics PY - 1973 SP - 110 EP - 118 VL - 18 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103457/ DO - 10.21136/AM.1973.103457 LA - en ID - 10_21136_AM_1973_103457 ER -
%0 Journal Article %A Šidák, Zbyněk %T A chain of inequalities for some types of multivariate distributions, with nine special cases %J Applications of Mathematics %D 1973 %P 110-118 %V 18 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.21136/AM.1973.103457/ %R 10.21136/AM.1973.103457 %G en %F 10_21136_AM_1973_103457
Šidák, Zbyněk. A chain of inequalities for some types of multivariate distributions, with nine special cases. Applications of Mathematics, Tome 18 (1973) no. 2, pp. 110-118. doi: 10.21136/AM.1973.103457
Cité par Sources :