Epsilon-inflation with contractive interval functions
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 43 (1998) no. 4, pp. 241-254
    
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              For contractive interval functions $ [g] $ we show that $ [g]([x]^{k_0}_\epsilon ) \subseteq \int ([x]^{k_0}_\epsilon ) $ results from the iterative process $ [x]^{k+1} := [g]([x]^k_\epsilon ) $ after finitely many iterations if one uses the epsilon-inflated vector $ [x]^k_\epsilon $ as input for $ [g] $ instead of the original output vector $ [x]^k $. Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1023/A:1023297204431
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
65F05, 65F10, 65F15, 65G05, 65G10, 65G50, 65H10, 65H15, 65L05
Keywords: epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values
                    
                    
                    
                  
                
                
                Keywords: epsilon-inflation; P-contraction; contraction; verification algorithms; interval computation; nonlinear equations; eigenvalues; singular values
@article{10_1023_A_1023297204431,
     author = {Mayer, G\"unter},
     title = {Epsilon-inflation with contractive interval functions},
     journal = {Applications of Mathematics},
     pages = {241--254},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     doi = {10.1023/A:1023297204431},
     mrnumber = {1627997},
     zbl = {0938.65058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/}
}
                      
                      
                    TY - JOUR AU - Mayer, Günter TI - Epsilon-inflation with contractive interval functions JO - Applications of Mathematics PY - 1998 SP - 241 EP - 254 VL - 43 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023297204431/ DO - 10.1023/A:1023297204431 LA - en ID - 10_1023_A_1023297204431 ER -
Mayer, Günter. Epsilon-inflation with contractive interval functions. Applications of Mathematics, Tome 43 (1998) no. 4, pp. 241-254. doi: 10.1023/A:1023297204431
Cité par Sources :