Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity
Applications of Mathematics, Tome 43 (1998) no. 3, pp. 173-205
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we develop a thermodynamically consistent description of the uniaxial behavior of thermovisco-elastoplastic materials for which the total stress $\sigma $ contains, in addition to elastic, viscous and thermic contributions, a plastic component $\sigma ^p$ of the form $\sigma ^p(x,t)={\mathcal P}[\varepsilon ,\theta (x,t)](x,t)$. Here $\varepsilon $ and $\theta $ are the fields of strain and absolute temperature, respectively, and $\lbrace {\mathcal P}[\cdot ,\theta ]\rbrace _{\theta > 0}$ denotes a family of (rate-independent) hysteresis operators of Prandtl-Ishlinskii type, parametrized by the absolute temperature. The system of momentum and energy balance equations governing the space-time evolution of the material forms a system of two highly nonlinearly coupled partial differential equations involving partial derivatives of hysteretic nonlinearities at different places. It is shown that an initial-boundary value problem for this system admits a unique global strong solution which depends continuously on the data.
DOI :
10.1023/A:1023224507448
Classification :
35G25, 73B05, 73B30, 73E60, 74N30
Keywords: thermoplasticity; viscoelasticity; hysteresis; Prandtl-Ishlinskii operator; PDEs with hysteresis; thermodynamical consistency
Keywords: thermoplasticity; viscoelasticity; hysteresis; Prandtl-Ishlinskii operator; PDEs with hysteresis; thermodynamical consistency
@article{10_1023_A_1023224507448, author = {Krej\v{c}{\'\i}, Pavel and Sprekels, J\"urgen}, title = {Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity}, journal = {Applications of Mathematics}, pages = {173--205}, publisher = {mathdoc}, volume = {43}, number = {3}, year = {1998}, doi = {10.1023/A:1023224507448}, mrnumber = {1620624}, zbl = {0940.35052}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/} }
TY - JOUR AU - Krejčí, Pavel AU - Sprekels, Jürgen TI - Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity JO - Applications of Mathematics PY - 1998 SP - 173 EP - 205 VL - 43 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/ DO - 10.1023/A:1023224507448 LA - en ID - 10_1023_A_1023224507448 ER -
%0 Journal Article %A Krejčí, Pavel %A Sprekels, Jürgen %T Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity %J Applications of Mathematics %D 1998 %P 173-205 %V 43 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1023224507448/ %R 10.1023/A:1023224507448 %G en %F 10_1023_A_1023224507448
Krejčí, Pavel; Sprekels, Jürgen. Temperature-dependent hysteresis in one-dimensional thermovisco-elastoplasticity. Applications of Mathematics, Tome 43 (1998) no. 3, pp. 173-205. doi: 10.1023/A:1023224507448
Cité par Sources :