Local Lipschitz continuity of the stop operator
Applications of Mathematics, Tome 43 (1998) no. 6, pp. 461-477
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
On a closed convex set $Z$ in ${\mathbb{R}}^N$ with sufficiently smooth (${\mathcal W}^{2,\infty }$) boundary, the stop operator is locally Lipschitz continuous from ${\mathbf W}^{1,1}([0,T],{\mathbb{R}}^N) \times Z$ into ${\mathbf W}^{1,1}([0,T],{\mathbb{R}}^N)$. The smoothness of the boundary is essential: A counterexample shows that ${\mathcal C}^1$-smoothness is not sufficient.
DOI :
10.1023/A:1023221405455
Classification :
34A60, 47H30, 47J40, 49J40
Keywords: hysteresis; stop operator; differential inclusion; Lipschitz continuity
Keywords: hysteresis; stop operator; differential inclusion; Lipschitz continuity
@article{10_1023_A_1023221405455,
author = {Desch, Wolfgang},
title = {Local {Lipschitz} continuity of the stop operator},
journal = {Applications of Mathematics},
pages = {461--477},
publisher = {mathdoc},
volume = {43},
number = {6},
year = {1998},
doi = {10.1023/A:1023221405455},
mrnumber = {1652108},
zbl = {0937.47058},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023221405455/}
}
TY - JOUR AU - Desch, Wolfgang TI - Local Lipschitz continuity of the stop operator JO - Applications of Mathematics PY - 1998 SP - 461 EP - 477 VL - 43 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023221405455/ DO - 10.1023/A:1023221405455 LA - en ID - 10_1023_A_1023221405455 ER -
Desch, Wolfgang. Local Lipschitz continuity of the stop operator. Applications of Mathematics, Tome 43 (1998) no. 6, pp. 461-477. doi: 10.1023/A:1023221405455
Cité par Sources :