Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 44 (1999) no. 3, pp. 169-241
    
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              Making use of a surface integral defined without use of the partition of unity, trace theorems and the Gauss-Ostrogradskij theorem are proved in the case of three-dimensional domains $\Omega$ with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces $H^{1,p}()$ $(1\le p)$. The paper is a generalization of the previous author’s paper which is devoted to the line integral.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1023/A:1023097018446
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
35J20, 46E35, 65N99
Keywords: variational problems; surface integral; trace theorems; Gauss-Ostrogradskij theorem
                    
                    
                    
                  
                
                
                Keywords: variational problems; surface integral; trace theorems; Gauss-Ostrogradskij theorem
@article{10_1023_A_1023097018446,
     author = {\v{Z}en{\'\i}\v{s}ek, Alexander},
     title = {Surface integral and {Gauss-Ostrogradskij} theorem from the viewpoint of applications},
     journal = {Applications of Mathematics},
     pages = {169--241},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1999},
     doi = {10.1023/A:1023097018446},
     mrnumber = {1688569},
     zbl = {1060.46511},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/}
}
                      
                      
                    TY - JOUR AU - Ženíšek, Alexander TI - Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications JO - Applications of Mathematics PY - 1999 SP - 169 EP - 241 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/ DO - 10.1023/A:1023097018446 LA - en ID - 10_1023_A_1023097018446 ER -
%0 Journal Article %A Ženíšek, Alexander %T Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications %J Applications of Mathematics %D 1999 %P 169-241 %V 44 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1023097018446/ %R 10.1023/A:1023097018446 %G en %F 10_1023_A_1023097018446
Ženíšek, Alexander. Surface integral and Gauss-Ostrogradskij theorem from the viewpoint of applications. Applications of Mathematics, Tome 44 (1999) no. 3, pp. 169-241. doi: 10.1023/A:1023097018446
Cité par Sources :