Some estimates for the oscillation of the deformation gradient
Applications of Mathematics, Tome 45 (2000) no. 6, pp. 401-410
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
As a measure of deformation we can take the difference $D\vec{\phi }-R$, where $D\vec{\phi }$ is the deformation gradient of the mapping $\vec{\phi }$ and $R$ is the deformation gradient of the mapping $\vec{\gamma }$, which represents some proper rigid motion. In this article, the norm $\Vert D\vec{\phi }-R\Vert _{L^p(\Omega )}$ is estimated by means of the scalar measure $e(\vec{\phi })$ of nonlinear strain. First, the estimates are given for a deformation $\vec{\phi }\in W^{1,p}(\Omega )$ satisfying the condition $\vec{\phi }\big |_{\partial \Omega } = \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$. Then we deduce the estimate in the case that $\vec{\phi }(x)$ is a bi-Lipschitzian deformation and $\vec{\phi }\big |_{\partial \Omega } \ne \vec{\hspace{0.7pt}\mathop {\mathrm {id}}}$.
DOI :
10.1023/A:1022340215798
Classification :
35Q72, 73G05, 74B20
Keywords: hyperelastic material; deformation gradient; strain tensor; matrix and spectral norms; bi-Lipschitzian map
Keywords: hyperelastic material; deformation gradient; strain tensor; matrix and spectral norms; bi-Lipschitzian map
@article{10_1023_A_1022340215798,
author = {Mo\v{s}ov\'a, Vratislava},
title = {Some estimates for the oscillation of the deformation gradient},
journal = {Applications of Mathematics},
pages = {401--410},
publisher = {mathdoc},
volume = {45},
number = {6},
year = {2000},
doi = {10.1023/A:1022340215798},
mrnumber = {1800961},
zbl = {1002.74011},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/}
}
TY - JOUR AU - Mošová, Vratislava TI - Some estimates for the oscillation of the deformation gradient JO - Applications of Mathematics PY - 2000 SP - 401 EP - 410 VL - 45 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/ DO - 10.1023/A:1022340215798 LA - en ID - 10_1023_A_1022340215798 ER -
%0 Journal Article %A Mošová, Vratislava %T Some estimates for the oscillation of the deformation gradient %J Applications of Mathematics %D 2000 %P 401-410 %V 45 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022340215798/ %R 10.1023/A:1022340215798 %G en %F 10_1023_A_1022340215798
Mošová, Vratislava. Some estimates for the oscillation of the deformation gradient. Applications of Mathematics, Tome 45 (2000) no. 6, pp. 401-410. doi: 10.1023/A:1022340215798
Cité par Sources :