$(h,\Phi)$-entropy differential metric
Applications of Mathematics, Tome 42 (1997) no. 2, pp. 81-98
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Burbea and Rao (1982a, 1982b) gave some general methods for constructing quadratic differential metrics on probability spaces. Using these methods, they obtained the Fisher information metric as a particular case. In this paper we apply the method based on entropy measures to obtain a Riemannian metric based on $(h,\Phi )$-entropy measures (Salicrú et al., 1993). The geodesic distances based on that information metric have been computed for a number of parametric families of distributions. The use of geodesic distances in testing statistical hypotheses is illustrated by an example within the Pareto family. We obtain the asymptotic distribution of the information matrices associated with the metric when the parameter is replaced by its maximum likelihood estimator. The relation between the information matrices and the Cramér-Rao inequality is also obtained.
DOI :
10.1023/A:1022214326758
Classification :
53B20, 62B10, 62E20, 62H12, 94A17
Keywords: $(h, \Phi )$-entropy measures; information metric; geodesic distance between probability distributions; maximum likelihood estimators; asymptotic distributions; Cramér-Rao inequality.; generalized entropies
Keywords: $(h, \Phi )$-entropy measures; information metric; geodesic distance between probability distributions; maximum likelihood estimators; asymptotic distributions; Cramér-Rao inequality.; generalized entropies
@article{10_1023_A_1022214326758, author = {Men\'endez, M. L. and Morales, D. and Pardo, L. and Salicr\'u, M.}, title = {$(h,\Phi)$-entropy differential metric}, journal = {Applications of Mathematics}, pages = {81--98}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {1997}, doi = {10.1023/A:1022214326758}, mrnumber = {1430403}, zbl = {0898.62005}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1022214326758/} }
TY - JOUR AU - Menéndez, M. L. AU - Morales, D. AU - Pardo, L. AU - Salicrú, M. TI - $(h,\Phi)$-entropy differential metric JO - Applications of Mathematics PY - 1997 SP - 81 EP - 98 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1022214326758/ DO - 10.1023/A:1022214326758 LA - en ID - 10_1023_A_1022214326758 ER -
%0 Journal Article %A Menéndez, M. L. %A Morales, D. %A Pardo, L. %A Salicrú, M. %T $(h,\Phi)$-entropy differential metric %J Applications of Mathematics %D 1997 %P 81-98 %V 42 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1022214326758/ %R 10.1023/A:1022214326758 %G en %F 10_1023_A_1022214326758
Menéndez, M. L.; Morales, D.; Pardo, L.; Salicrú, M. $(h,\Phi)$-entropy differential metric. Applications of Mathematics, Tome 42 (1997) no. 2, pp. 81-98. doi: 10.1023/A:1022214326758
Cité par Sources :