Global existence for a nuclear fluid in one dimension: the $T>0$ case
Applications of Mathematics, Tome 47 (2002) no. 1, pp. 45-75
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a simplified one-dimensional thermal model of nuclear matter, described by a system of Navier-Stokes-Poisson type, with a non monotone equation of state due to an effective nuclear interaction. We prove the existence of globally defined (large) solutions of the corresponding free boundary problem, with an exterior pressure $P$ which is not required to be positive, provided sufficient thermal dissipation is present. We give also a partial description of the asymptotic behaviour of the system, in the two cases $P>0$ and $P0$.
DOI :
10.1023/A:1021754900964
Classification :
74D10, 76D05, 76N15
Keywords: Navier-Stokes equations; compressible fluid
Keywords: Navier-Stokes equations; compressible fluid
@article{10_1023_A_1021754900964,
author = {Ducomet, B.},
title = {Global existence for a nuclear fluid in one dimension: the $T>0$ case},
journal = {Applications of Mathematics},
pages = {45--75},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2002},
doi = {10.1023/A:1021754900964},
mrnumber = {1876491},
zbl = {1090.76517},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/}
}
TY - JOUR AU - Ducomet, B. TI - Global existence for a nuclear fluid in one dimension: the $T>0$ case JO - Applications of Mathematics PY - 2002 SP - 45 EP - 75 VL - 47 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/ DO - 10.1023/A:1021754900964 LA - en ID - 10_1023_A_1021754900964 ER -
%0 Journal Article %A Ducomet, B. %T Global existence for a nuclear fluid in one dimension: the $T>0$ case %J Applications of Mathematics %D 2002 %P 45-75 %V 47 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1023/A:1021754900964/ %R 10.1023/A:1021754900964 %G en %F 10_1023_A_1021754900964
Ducomet, B. Global existence for a nuclear fluid in one dimension: the $T>0$ case. Applications of Mathematics, Tome 47 (2002) no. 1, pp. 45-75. doi: 10.1023/A:1021754900964
Cité par Sources :