On exact results in the finite element method
Applications of Mathematics, Tome 46 (2001) no. 6, pp. 467-478
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution $u$. We show that the Galerkin approximation of $u$ based on the so-called biharmonic finite elements is independent of the values of $u$ in the interior of any subelement.
DOI :
10.1023/A:1013716729409
Classification :
35J40, 65N30
Keywords: boundary value elliptic problems; finite element method; generalized splines; elastic plate
Keywords: boundary value elliptic problems; finite element method; generalized splines; elastic plate
@article{10_1023_A_1013716729409,
author = {Hlav\'a\v{c}ek, Ivan and K\v{r}{\'\i}\v{z}ek, Michal},
title = {On exact results in the finite element method},
journal = {Applications of Mathematics},
pages = {467--478},
publisher = {mathdoc},
volume = {46},
number = {6},
year = {2001},
doi = {10.1023/A:1013716729409},
mrnumber = {1865517},
zbl = {1066.65126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/}
}
TY - JOUR AU - Hlaváček, Ivan AU - Křížek, Michal TI - On exact results in the finite element method JO - Applications of Mathematics PY - 2001 SP - 467 EP - 478 VL - 46 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1023/A:1013716729409/ DO - 10.1023/A:1013716729409 LA - en ID - 10_1023_A_1013716729409 ER -
Hlaváček, Ivan; Křížek, Michal. On exact results in the finite element method. Applications of Mathematics, Tome 46 (2001) no. 6, pp. 467-478. doi: 10.1023/A:1013716729409
Cité par Sources :