The $M_\alpha $ and $C$-integrals
    
    
  
  
  
      
      
      
        
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 869-878
    
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              In this paper, we define the $M_\alpha $-integral of real-valued functions defined on an interval $[a,b]$ and investigate important properties of the $M_{\alpha }$-integral. In particular, we show that a function $f\colon [a,b]\rightarrow R$ is $M_{\alpha }$-integrable on $[a,b]$ if and only if there exists an $ACG_{\alpha }$ function $F$ such that $F'=f$ almost everywhere on $[a,b]$. It can be seen easily that every McShane integrable function on $[a,b]$ is $M_{\alpha }$-integrable and every $M_{\alpha }$-integrable function on $[a,b]$ is Henstock integrable. In addition, we show that the $M_{\alpha }$-integral is equivalent to the $C$-integral.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1007/s10587-012-0070-1
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
26A39
Keywords: $M_\alpha $-integral; $ACG_\alpha $ function
                    
                    
                    
                  
                
                
                Keywords: $M_\alpha $-integral; $ACG_\alpha $ function
@article{10_1007_s10587_012_0070_1,
     author = {Park, Jae Myung and Ryu, Hyung Won and Lee, Hoe Kyoung and Lee, Deuk Ho},
     title = {The $M_\alpha $ and $C$-integrals},
     journal = {Czechoslovak Mathematical Journal},
     pages = {869--878},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0070-1},
     mrnumber = {3010244},
     zbl = {1274.26016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0070-1/}
}
                      
                      
                    TY - JOUR AU - Park, Jae Myung AU - Ryu, Hyung Won AU - Lee, Hoe Kyoung AU - Lee, Deuk Ho TI - The $M_\alpha $ and $C$-integrals JO - Czechoslovak Mathematical Journal PY - 2012 SP - 869 EP - 878 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0070-1/ DO - 10.1007/s10587-012-0070-1 LA - en ID - 10_1007_s10587_012_0070_1 ER -
%0 Journal Article %A Park, Jae Myung %A Ryu, Hyung Won %A Lee, Hoe Kyoung %A Lee, Deuk Ho %T The $M_\alpha $ and $C$-integrals %J Czechoslovak Mathematical Journal %D 2012 %P 869-878 %V 62 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0070-1/ %R 10.1007/s10587-012-0070-1 %G en %F 10_1007_s10587_012_0070_1
Park, Jae Myung; Ryu, Hyung Won; Lee, Hoe Kyoung; Lee, Deuk Ho. The $M_\alpha $ and $C$-integrals. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 869-878. doi: 10.1007/s10587-012-0070-1
Cité par Sources :