Decomposition of $\ell $-group-valued measures
    
    
  
  
  
      
      
      
        
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100
    
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              We deal with decomposition theorems for modular measures $\mu \colon L\rightarrow G$ defined on a D-lattice with values in a Dedekind complete $\ell $-group. Using the celebrated band decomposition theorem of Riesz in Dedekind complete $\ell $-groups, several decomposition theorems including the Lebesgue decomposition theorem, the Hewitt-Yosida decomposition theorem and the Alexandroff decomposition theorem are derived. Our main result—also based on the band decomposition theorem of Riesz—is the Hammer-Sobczyk decomposition for $\ell $-group-valued modular measures on D-lattices. Recall that D-lattices (or equivalently lattice ordered effect algebras) are a common generalization of orthomodular lattices and of MV-algebras, and therefore of Boolean algebras. If $L$ is an MV-algebra, in particular if $L$ is a Boolean algebra, then the modular measures on $L$ are exactly the finitely additive measures in the usual sense, and thus our results contain results for finitely additive $G$-valued measures defined on Boolean algebras.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1007/s10587-012-0065-y
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
06C15, 06F15, 28B10, 28B15
Keywords: D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
                    
                    
                    
                  
                
                
                Keywords: D-lattice; measure; lattice ordered group; decomposition; Hammer-Sobczyk decomposition
@article{10_1007_s10587_012_0065_y,
     author = {Barbieri, Giuseppina and Valente, Antonietta and Weber, Hans},
     title = {Decomposition of $\ell $-group-valued measures},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1085--1100},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {2012},
     doi = {10.1007/s10587-012-0065-y},
     mrnumber = {3010258},
     zbl = {1274.28025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/}
}
                      
                      
                    TY - JOUR AU - Barbieri, Giuseppina AU - Valente, Antonietta AU - Weber, Hans TI - Decomposition of $\ell $-group-valued measures JO - Czechoslovak Mathematical Journal PY - 2012 SP - 1085 EP - 1100 VL - 62 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/ DO - 10.1007/s10587-012-0065-y LA - en ID - 10_1007_s10587_012_0065_y ER -
%0 Journal Article %A Barbieri, Giuseppina %A Valente, Antonietta %A Weber, Hans %T Decomposition of $\ell $-group-valued measures %J Czechoslovak Mathematical Journal %D 2012 %P 1085-1100 %V 62 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0065-y/ %R 10.1007/s10587-012-0065-y %G en %F 10_1007_s10587_012_0065_y
Barbieri, Giuseppina; Valente, Antonietta; Weber, Hans. Decomposition of $\ell $-group-valued measures. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 4, pp. 1085-1100. doi: 10.1007/s10587-012-0065-y
Cité par Sources :