Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow
Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 335-346
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Function Theorem and $L^2$-maximal regularity results for linear parabolic equations. The application of the Local Inverse Function Theorem leads to a particularly short proof which gives in addition the space-time regularity of the solutions. The method may be applied to general nonlinear evolution equations, but is presented in the special situation only.
DOI :
10.1007/s10587-012-0033-6
Classification :
35B30, 35B65, 35K90, 35K93, 46T20
Keywords: curve shortening flow; maximal regularity; local inverse function theorem
Keywords: curve shortening flow; maximal regularity; local inverse function theorem
@article{10_1007_s10587_012_0033_6,
author = {Boussandel, Sahbi and Chill, Ralph and Fa\v{s}angov\'a, Eva},
title = {Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow},
journal = {Czechoslovak Mathematical Journal},
pages = {335--346},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {2012},
doi = {10.1007/s10587-012-0033-6},
mrnumber = {2990180},
zbl = {1265.35019},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0033-6/}
}
TY - JOUR AU - Boussandel, Sahbi AU - Chill, Ralph AU - Fašangová, Eva TI - Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow JO - Czechoslovak Mathematical Journal PY - 2012 SP - 335 EP - 346 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0033-6/ DO - 10.1007/s10587-012-0033-6 LA - en ID - 10_1007_s10587_012_0033_6 ER -
%0 Journal Article %A Boussandel, Sahbi %A Chill, Ralph %A Fašangová, Eva %T Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow %J Czechoslovak Mathematical Journal %D 2012 %P 335-346 %V 62 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10587-012-0033-6/ %R 10.1007/s10587-012-0033-6 %G en %F 10_1007_s10587_012_0033_6
Boussandel, Sahbi; Chill, Ralph; Fašangová, Eva. Maximal regularity, the local inverse function theorem, and local well-posedness for the curve shortening flow. Czechoslovak Mathematical Journal, Tome 62 (2012) no. 2, pp. 335-346. doi: 10.1007/s10587-012-0033-6
Cité par Sources :