Approximation by $q$-Bernstein type operators
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 329-336
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Using the $q$-Bernstein basis, we construct a new sequence $\{ L_{n} \}$ of positive linear operators in $C[0,1].$ We study its approximation properties and the rate of convergence in terms of modulus of continuity.
DOI :
10.1007/s10587-011-0078-y
Classification :
33D99, 41A25, 41A36
Keywords: $q$-integers; $q$-Bernstein operators; the Hahn-Banach theorem; modulus of continuity
Keywords: $q$-integers; $q$-Bernstein operators; the Hahn-Banach theorem; modulus of continuity
@article{10_1007_s10587_011_0078_y,
author = {Finta, Zolt\'an},
title = {Approximation by $q${-Bernstein} type operators},
journal = {Czechoslovak Mathematical Journal},
pages = {329--336},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2011},
doi = {10.1007/s10587-011-0078-y},
mrnumber = {2905407},
zbl = {1249.41033},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/}
}
TY - JOUR AU - Finta, Zoltán TI - Approximation by $q$-Bernstein type operators JO - Czechoslovak Mathematical Journal PY - 2011 SP - 329 EP - 336 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0078-y/ DO - 10.1007/s10587-011-0078-y LA - en ID - 10_1007_s10587_011_0078_y ER -
Finta, Zoltán. Approximation by $q$-Bernstein type operators. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 329-336. doi: 10.1007/s10587-011-0078-y
Cité par Sources :