Stanley decompositions and polarization
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 483-493
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We define nice partitions of the multicomplex associated with a Stanley ideal. As the main result we show that if the monomial ideal $I$ is a CM Stanley ideal, then $I^p$ is a Stanley ideal as well, where $I^p$ is the polarization of $I$.
DOI :
10.1007/s10587-011-0067-1
Classification :
13C14, 13F20, 13F55, 13H10
Keywords: monomial ideals; partitionable simplicial complexes; multicomplexes; Stanley ideals; polarization
Keywords: monomial ideals; partitionable simplicial complexes; multicomplexes; Stanley ideals; polarization
@article{10_1007_s10587_011_0067_1,
author = {Ahmad, Sarfraz},
title = {Stanley decompositions and polarization},
journal = {Czechoslovak Mathematical Journal},
pages = {483--493},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {2011},
doi = {10.1007/s10587-011-0067-1},
mrnumber = {2905417},
zbl = {1249.13016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0067-1/}
}
TY - JOUR AU - Ahmad, Sarfraz TI - Stanley decompositions and polarization JO - Czechoslovak Mathematical Journal PY - 2011 SP - 483 EP - 493 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0067-1/ DO - 10.1007/s10587-011-0067-1 LA - en ID - 10_1007_s10587_011_0067_1 ER -
Ahmad, Sarfraz. Stanley decompositions and polarization. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 2, pp. 483-493. doi: 10.1007/s10587-011-0067-1
Cité par Sources :