Order bounded orthosymmetric bilinear operator
Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is proved by an order theoretical and purely algebraic method that any order bounded orthosymmetric bilinear operator $b\colon E\times E\rightarrow F$ where $E$ and $F$ are Archimedean vector lattices is symmetric. This leads to a new and short proof of the commutativity of Archimedean almost $f$-algebras.
DOI :
10.1007/s10587-011-0052-8
Classification :
06F25, 46A40, 47A65
Keywords: vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
Keywords: vector lattice; positive bilinear operator; orthosymmetric bilinear operator; lattice bimorphism
@article{10_1007_s10587_011_0052_8,
author = {Chil, Elmiloud},
title = {Order bounded orthosymmetric bilinear operator},
journal = {Czechoslovak Mathematical Journal},
pages = {873--880},
publisher = {mathdoc},
volume = {61},
number = {4},
year = {2011},
doi = {10.1007/s10587-011-0052-8},
mrnumber = {2886242},
zbl = {1249.06048},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/}
}
TY - JOUR AU - Chil, Elmiloud TI - Order bounded orthosymmetric bilinear operator JO - Czechoslovak Mathematical Journal PY - 2011 SP - 873 EP - 880 VL - 61 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10587-011-0052-8/ DO - 10.1007/s10587-011-0052-8 LA - en ID - 10_1007_s10587_011_0052_8 ER -
Chil, Elmiloud. Order bounded orthosymmetric bilinear operator. Czechoslovak Mathematical Journal, Tome 61 (2011) no. 4, pp. 873-880. doi: 10.1007/s10587-011-0052-8
Cité par Sources :