An intersection theorem for set-valued mappings
Applications of Mathematics, Tome 58 (2013) no. 3, pp. 269-278
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given a nonempty convex set $X$ in a locally convex Hausdorff topological vector space, a nonempty set $Y$ and two set-valued mappings $T\colon X\rightrightarrows X$, $S\colon Y\rightrightarrows X$ we prove that under suitable conditions one can find an $x\in X$ which is simultaneously a fixed point for $T$ and a common point for the family of values of $S$. Applying our intersection theorem we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
DOI :
10.1007/s10492-013-0013-7
Classification :
47H04, 47H10, 49J53
Keywords: intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem
Keywords: intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem
@article{10_1007_s10492_013_0013_7,
author = {Agarwal, Ravi P. and Balaj, Mircea and O'Regan, Donal},
title = {An intersection theorem for set-valued mappings},
journal = {Applications of Mathematics},
pages = {269--278},
publisher = {mathdoc},
volume = {58},
number = {3},
year = {2013},
doi = {10.1007/s10492-013-0013-7},
mrnumber = {3066821},
zbl = {1275.47105},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0013-7/}
}
TY - JOUR AU - Agarwal, Ravi P. AU - Balaj, Mircea AU - O'Regan, Donal TI - An intersection theorem for set-valued mappings JO - Applications of Mathematics PY - 2013 SP - 269 EP - 278 VL - 58 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0013-7/ DO - 10.1007/s10492-013-0013-7 LA - en ID - 10_1007_s10492_013_0013_7 ER -
%0 Journal Article %A Agarwal, Ravi P. %A Balaj, Mircea %A O'Regan, Donal %T An intersection theorem for set-valued mappings %J Applications of Mathematics %D 2013 %P 269-278 %V 58 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0013-7/ %R 10.1007/s10492-013-0013-7 %G en %F 10_1007_s10492_013_0013_7
Agarwal, Ravi P.; Balaj, Mircea; O'Regan, Donal. An intersection theorem for set-valued mappings. Applications of Mathematics, Tome 58 (2013) no. 3, pp. 269-278. doi: 10.1007/s10492-013-0013-7
Cité par Sources :