A smoothing Newton method for the second-order cone complementarity problem
Applications of Mathematics, Tome 58 (2013) no. 2, pp. 223-247
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we introduce a new smoothing function and show that it is coercive under suitable assumptions. Based on this new function, we propose a smoothing Newton method for solving the second-order cone complementarity problem (SOCCP). The proposed algorithm solves only one linear system of equations and performs only one line search at each iteration. It is shown that any accumulation point of the iteration sequence generated by the proposed algorithm is a solution to the SOCCP. Furthermore, we prove that the generated sequence is bounded if the solution set of the SOCCP is nonempty and bounded. Under the assumption of nonsingularity, we establish the local quadratic convergence of the algorithm without the strict complementarity condition. Numerical results indicate that the proposed algorithm is promising.
DOI :
10.1007/s10492-013-0011-9
Classification :
90C25, 90C30, 90C33, 90C53
Keywords: second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence
Keywords: second-order cone complementarity problem; smoothing function; smoothing Newton method; global convergence; quadratic convergence
@article{10_1007_s10492_013_0011_9, author = {Tang, Jingyong and He, Guoping and Dong, Li and Fang, Liang and Zhou, Jinchuan}, title = {A smoothing {Newton} method for the second-order cone complementarity problem}, journal = {Applications of Mathematics}, pages = {223--247}, publisher = {mathdoc}, volume = {58}, number = {2}, year = {2013}, doi = {10.1007/s10492-013-0011-9}, mrnumber = {3034823}, zbl = {1274.90268}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0011-9/} }
TY - JOUR AU - Tang, Jingyong AU - He, Guoping AU - Dong, Li AU - Fang, Liang AU - Zhou, Jinchuan TI - A smoothing Newton method for the second-order cone complementarity problem JO - Applications of Mathematics PY - 2013 SP - 223 EP - 247 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0011-9/ DO - 10.1007/s10492-013-0011-9 LA - en ID - 10_1007_s10492_013_0011_9 ER -
%0 Journal Article %A Tang, Jingyong %A He, Guoping %A Dong, Li %A Fang, Liang %A Zhou, Jinchuan %T A smoothing Newton method for the second-order cone complementarity problem %J Applications of Mathematics %D 2013 %P 223-247 %V 58 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-013-0011-9/ %R 10.1007/s10492-013-0011-9 %G en %F 10_1007_s10492_013_0011_9
Tang, Jingyong; He, Guoping; Dong, Li; Fang, Liang; Zhou, Jinchuan. A smoothing Newton method for the second-order cone complementarity problem. Applications of Mathematics, Tome 58 (2013) no. 2, pp. 223-247. doi: 10.1007/s10492-013-0011-9
Cité par Sources :