Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity
Applications of Mathematics, Tome 56 (2011) no. 6, pp. 543-555
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the existence of a solution to the nonlinear fourth-order elastic beam equation with nonhomogeneous boundary conditions \[ \begin {cases} u^{(4)}(t)=f\bigl (t,u(t),u'(t),u''(t),u'''(t)\bigr ),\quad \text {a.e.} \ t\in [0,1],\\ u(0)=a, \ u'(0)=b, \ u(1)=c, \ u''(1)=d, \end {cases} \] where the nonlinear term $f(t,u_{0},u_{1},u_{2},u_{3})$ is a strong Carathéodory function. By constructing suitable height functions of the nonlinear term $f(t,u_{0},u_{1},u_{2},u_{3})$ on bounded sets and applying the Leray-Schauder fixed point theorem, we prove that the equation has a solution provided that the integration of some height function has an appropriate value.
DOI :
10.1007/s10492-011-0032-1
Classification :
34B15, 34B16, 47N20, 74K10
Keywords: nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem
Keywords: nonlinear ordinary differential equation; boundary value problem; existence; fixed point theorem
@article{10_1007_s10492_011_0032_1, author = {Yao, Qingliu}, title = {Solvability of a class of elastic beam equations with strong {Carath\'eodory} nonlinearity}, journal = {Applications of Mathematics}, pages = {543--555}, publisher = {mathdoc}, volume = {56}, number = {6}, year = {2011}, doi = {10.1007/s10492-011-0032-1}, mrnumber = {2886237}, zbl = {1249.34064}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0032-1/} }
TY - JOUR AU - Yao, Qingliu TI - Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity JO - Applications of Mathematics PY - 2011 SP - 543 EP - 555 VL - 56 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0032-1/ DO - 10.1007/s10492-011-0032-1 LA - en ID - 10_1007_s10492_011_0032_1 ER -
%0 Journal Article %A Yao, Qingliu %T Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity %J Applications of Mathematics %D 2011 %P 543-555 %V 56 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0032-1/ %R 10.1007/s10492-011-0032-1 %G en %F 10_1007_s10492_011_0032_1
Yao, Qingliu. Solvability of a class of elastic beam equations with strong Carathéodory nonlinearity. Applications of Mathematics, Tome 56 (2011) no. 6, pp. 543-555. doi: 10.1007/s10492-011-0032-1
Cité par Sources :