Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument
Applications of Mathematics, Tome 56 (2011) no. 3, pp. 253-264
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By using the coincidence degree theory, we study a type of $p$-Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of $T$-periodic solutions.
DOI :
10.1007/s10492-011-0015-2
Classification :
34B15, 34B20, 34B24, 34K13, 34K40, 47N20
Keywords: deviating argument; neutral; coincidence degree theory
Keywords: deviating argument; neutral; coincidence degree theory
@article{10_1007_s10492_011_0015_2, author = {Du, Bo and Hu, Xueping}, title = {Periodic solutions to a $p${-Laplacian} neutral {Rayleigh} equation with deviating argument}, journal = {Applications of Mathematics}, pages = {253--264}, publisher = {mathdoc}, volume = {56}, number = {3}, year = {2011}, doi = {10.1007/s10492-011-0015-2}, mrnumber = {2800577}, zbl = {1224.34226}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/} }
TY - JOUR AU - Du, Bo AU - Hu, Xueping TI - Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument JO - Applications of Mathematics PY - 2011 SP - 253 EP - 264 VL - 56 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/ DO - 10.1007/s10492-011-0015-2 LA - en ID - 10_1007_s10492_011_0015_2 ER -
%0 Journal Article %A Du, Bo %A Hu, Xueping %T Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument %J Applications of Mathematics %D 2011 %P 253-264 %V 56 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-011-0015-2/ %R 10.1007/s10492-011-0015-2 %G en %F 10_1007_s10492_011_0015_2
Du, Bo; Hu, Xueping. Periodic solutions to a $p$-Laplacian neutral Rayleigh equation with deviating argument. Applications of Mathematics, Tome 56 (2011) no. 3, pp. 253-264. doi: 10.1007/s10492-011-0015-2
Cité par Sources :