Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation
Applications of Mathematics, Tome 55 (2010) no. 3, pp. 197-219
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an $N$-body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is ``exact'' as $N$ tends to infinity.
DOI :
10.1007/s10492-010-0008-6
Classification :
81Q05, 81V05, 81V35, 81V70
Keywords: time-dependent Hartree-Fock equation; nuclear matter
Keywords: time-dependent Hartree-Fock equation; nuclear matter
@article{10_1007_s10492_010_0008_6,
author = {Ducomet, Bernard},
title = {Weak interaction limit for nuclear matter and the time-dependent {Hartree-Fock} equation},
journal = {Applications of Mathematics},
pages = {197--219},
publisher = {mathdoc},
volume = {55},
number = {3},
year = {2010},
doi = {10.1007/s10492-010-0008-6},
mrnumber = {2657834},
zbl = {1224.81018},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/}
}
TY - JOUR AU - Ducomet, Bernard TI - Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation JO - Applications of Mathematics PY - 2010 SP - 197 EP - 219 VL - 55 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/ DO - 10.1007/s10492-010-0008-6 LA - en ID - 10_1007_s10492_010_0008_6 ER -
%0 Journal Article %A Ducomet, Bernard %T Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation %J Applications of Mathematics %D 2010 %P 197-219 %V 55 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0008-6/ %R 10.1007/s10492-010-0008-6 %G en %F 10_1007_s10492_010_0008_6
Ducomet, Bernard. Weak interaction limit for nuclear matter and the time-dependent Hartree-Fock equation. Applications of Mathematics, Tome 55 (2010) no. 3, pp. 197-219. doi: 10.1007/s10492-010-0008-6
Cité par Sources :