A unified approach to singular problems arising in the membrane theory
    
    
  
  
  
      
      
      
        
Applications of Mathematics, Tome 55 (2010) no. 1, pp. 47-75
    
  
  
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
            
              We consider the singular boundary value problem $$ (t^nu'(t))'+ t^nf(t,u(t))=0, \quad \lim _{t\to 0+}t^nu'(t)=0, \quad a_0u(1)+a_1u'(1-)=A, $$ where $f(t,x)$ is a given continuous function defined on the set $(0,1]\times (0,\infty )$ which can have a time singularity at $t=0$ and a space singularity at $x=0$. Moreover, $n\in \Bbb N$, $n\ge 2$, and $a_0$, $a_1$, $A$ are real constants such that $a_0\in (0,\infty )$, whereas $a_1,A\in [0,\infty )$. The main aim of this paper is to discuss the existence of solutions to the above problem and apply the general results to cover certain classes of singular problems arising in the theory of shallow membrane caps, where we are especially interested in characterizing positive solutions. We illustrate the analytical findings by numerical simulations based on polynomial collocation.
            
            
            
          
        
      
                
                  
                  
                    
                    
                  
                    
                  
                
                
                
                
                  
  
    
      DOI : 
        
          10.1007/s10492-010-0002-z
        
        
    
  
                
                
                
                
                   
                      
                  
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
                
              
              
                  
                    
                    
                      
   Classification : 
34B15, 34B16, 34B18, 65L10, 74K15
Keywords: singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions
                    
                    
                    
                  
                
                
                Keywords: singular mixed boundary value problem; positive solution; shallow membrane; collocation method; lower and upper functions
@article{10_1007_s10492_010_0002_z,
     author = {Rach\r{u}nkov\'a, Irena and Pulverer, Gernot and Weinm\"uller, Ewa B.},
     title = {A unified approach to singular problems arising in the membrane theory},
     journal = {Applications of Mathematics},
     pages = {47--75},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2010},
     doi = {10.1007/s10492-010-0002-z},
     mrnumber = {2585561},
     zbl = {1224.34072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0002-z/}
}
                      
                      
                    TY - JOUR AU - Rachůnková, Irena AU - Pulverer, Gernot AU - Weinmüller, Ewa B. TI - A unified approach to singular problems arising in the membrane theory JO - Applications of Mathematics PY - 2010 SP - 47 EP - 75 VL - 55 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0002-z/ DO - 10.1007/s10492-010-0002-z LA - en ID - 10_1007_s10492_010_0002_z ER -
%0 Journal Article %A Rachůnková, Irena %A Pulverer, Gernot %A Weinmüller, Ewa B. %T A unified approach to singular problems arising in the membrane theory %J Applications of Mathematics %D 2010 %P 47-75 %V 55 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-010-0002-z/ %R 10.1007/s10492-010-0002-z %G en %F 10_1007_s10492_010_0002_z
Rachůnková, Irena; Pulverer, Gernot; Weinmüller, Ewa B. A unified approach to singular problems arising in the membrane theory. Applications of Mathematics, Tome 55 (2010) no. 1, pp. 47-75. doi: 10.1007/s10492-010-0002-z
Cité par Sources :
