Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations
Applications of Mathematics, Tome 54 (2009) no. 3, pp. 267-283
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
DOI :
10.1007/s10492-009-0017-5
Classification :
49J21, 49M25, 49M30, 65K10, 65N30, 65R20
Keywords: optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement
Keywords: optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; constrained optimal control problems; adaptive mesh refinement
@article{10_1007_s10492_009_0017_5,
author = {Yan, Ningning},
title = {Superconvergence analysis and a posteriori error estimation of a {Finite} {Element} {Method} for an optimal control problem governed by integral equations},
journal = {Applications of Mathematics},
pages = {267--283},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2009},
doi = {10.1007/s10492-009-0017-5},
mrnumber = {2530543},
zbl = {1212.65256},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0017-5/}
}
TY - JOUR AU - Yan, Ningning TI - Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations JO - Applications of Mathematics PY - 2009 SP - 267 EP - 283 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0017-5/ DO - 10.1007/s10492-009-0017-5 LA - en ID - 10_1007_s10492_009_0017_5 ER -
%0 Journal Article %A Yan, Ningning %T Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations %J Applications of Mathematics %D 2009 %P 267-283 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0017-5/ %R 10.1007/s10492-009-0017-5 %G en %F 10_1007_s10492_009_0017_5
Yan, Ningning. Superconvergence analysis and a posteriori error estimation of a Finite Element Method for an optimal control problem governed by integral equations. Applications of Mathematics, Tome 54 (2009) no. 3, pp. 267-283. doi: 10.1007/s10492-009-0017-5
Cité par Sources :