Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems
Applications of Mathematics, Tome 54 (2009) no. 3, pp. 251-266
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Natural superconvergence of the least-squares finite element method is surveyed for the one- and two-dimensional Poisson equation. For two-dimensional problems, both the families of Lagrange elements and Raviart-Thomas elements have been considered on uniform triangular and rectangular meshes. Numerical experiments reveal that many superconvergence properties of the standard Galerkin method are preserved by the least-squares finite element method.
DOI :
10.1007/s10492-009-0016-6
Classification :
35J05, 65N12, 65N30
Keywords: least-squares finite element method; mixed finite element method; natural superconvergence; Raviart-Thomas element; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method
Keywords: least-squares finite element method; mixed finite element method; natural superconvergence; Raviart-Thomas element; Poisson equation; Lagrange elements; triangular and rectangular meshes; numerical experiments; Galerkin method
@article{10_1007_s10492_009_0016_6, author = {Lin, Runchang and Zhang, Zhimin}, title = {Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems}, journal = {Applications of Mathematics}, pages = {251--266}, publisher = {mathdoc}, volume = {54}, number = {3}, year = {2009}, doi = {10.1007/s10492-009-0016-6}, mrnumber = {2530542}, zbl = {1212.65419}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/} }
TY - JOUR AU - Lin, Runchang AU - Zhang, Zhimin TI - Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems JO - Applications of Mathematics PY - 2009 SP - 251 EP - 266 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/ DO - 10.1007/s10492-009-0016-6 LA - en ID - 10_1007_s10492_009_0016_6 ER -
%0 Journal Article %A Lin, Runchang %A Zhang, Zhimin %T Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems %J Applications of Mathematics %D 2009 %P 251-266 %V 54 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0016-6/ %R 10.1007/s10492-009-0016-6 %G en %F 10_1007_s10492_009_0016_6
Lin, Runchang; Zhang, Zhimin. Numerical study of natural superconvergence in least-squares finite element methods for elliptic problems. Applications of Mathematics, Tome 54 (2009) no. 3, pp. 251-266. doi: 10.1007/s10492-009-0016-6
Cité par Sources :