Rate independent Kurzweil processes
Applications of Mathematics, Tome 54 (2009) no. 2, pp. 117-145
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The Kurzweil integral technique is applied to a class of rate independent processes with convex energy and discontinuous inputs. We prove existence, uniqueness, and continuous data dependence of solutions in $BV$ spaces. It is shown that in the context of elastoplasticity, the Kurzweil solutions coincide with natural limits of viscous regularizations when the viscosity coefficient tends to zero. The discontinuities produce an additional positive dissipation term, which is not homogeneous of degree one.
DOI :
10.1007/s10492-009-0009-5
Classification :
49J40, 49K40, 74C15
Keywords: Kurzweil integral; rate independence
Keywords: Kurzweil integral; rate independence
@article{10_1007_s10492_009_0009_5,
author = {Krej\v{c}{\'\i}, Pavel and Liero, Matthias},
title = {Rate independent {Kurzweil} processes},
journal = {Applications of Mathematics},
pages = {117--145},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2009},
doi = {10.1007/s10492-009-0009-5},
mrnumber = {2491851},
zbl = {1212.49007},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0009-5/}
}
TY - JOUR AU - Krejčí, Pavel AU - Liero, Matthias TI - Rate independent Kurzweil processes JO - Applications of Mathematics PY - 2009 SP - 117 EP - 145 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-009-0009-5/ DO - 10.1007/s10492-009-0009-5 LA - en ID - 10_1007_s10492_009_0009_5 ER -
Krejčí, Pavel; Liero, Matthias. Rate independent Kurzweil processes. Applications of Mathematics, Tome 54 (2009) no. 2, pp. 117-145. doi: 10.1007/s10492-009-0009-5
Cité par Sources :