Uniqueness of weak solutions of the Navier-Stokes equations
Applications of Mathematics, Tome 53 (2008) no. 6, pp. 561-582
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Consider the Navier-Stokes equation with the initial data $a\in L_{\sigma }^2( \Bbb R^d) $. Let $u$ and $v$ be two weak solutions with the same initial value $a$. If $u$ satisfies the usual energy inequality and if $\nabla v\in L^2(( 0,T) ;\dot X _1(\Bbb R^d)^d)$ where $\dot X_1(\Bbb R^d)$ is the multiplier space, then we have $u=v$.
DOI :
10.1007/s10492-008-0042-9
Classification :
35D30, 35Q30, 76D03, 76D05
Keywords: Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space
Keywords: Navier-Stokes equations; solution uniqueness; weak Leray-Hopf solution; multiplier space
@article{10_1007_s10492_008_0042_9,
author = {Gala, Sadek},
title = {Uniqueness of weak solutions of the {Navier-Stokes} equations},
journal = {Applications of Mathematics},
pages = {561--582},
publisher = {mathdoc},
volume = {53},
number = {6},
year = {2008},
doi = {10.1007/s10492-008-0042-9},
mrnumber = {2469066},
zbl = {1199.35274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/}
}
TY - JOUR AU - Gala, Sadek TI - Uniqueness of weak solutions of the Navier-Stokes equations JO - Applications of Mathematics PY - 2008 SP - 561 EP - 582 VL - 53 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0042-9/ DO - 10.1007/s10492-008-0042-9 LA - en ID - 10_1007_s10492_008_0042_9 ER -
Gala, Sadek. Uniqueness of weak solutions of the Navier-Stokes equations. Applications of Mathematics, Tome 53 (2008) no. 6, pp. 561-582. doi: 10.1007/s10492-008-0042-9
Cité par Sources :