Multiscale stochastic homogenization of convection-diffusion equations
Applications of Mathematics, Tome 53 (2008) no. 2, pp. 143-155
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form ${\partial u^\omega _{\varepsilon }}/{\partial t} +{1}/{\epsilon _3}\,\mathcal C\bigl (T_3({x}/{\varepsilon _3}) \omega _3\bigr )\cdot \nabla u^\omega _{\varepsilon }- \div \bigl ( \alpha \bigl (T_1({x}/{\varepsilon _1})\omega _1, T_2({x}/{\varepsilon _2})\omega _2 ,t\bigr ) \nabla u^\omega _{\varepsilon }\bigr )=f$. It is shown, under certain structure assumptions on the random vector field ${\mathcal C}(\omega _3)$ and the random map $\alpha (\omega _1,\omega _2,t)$, that the sequence $\lbrace u^\omega _\epsilon \rbrace $ of solutions converges in the sense of G-convergence of parabolic operators to the solution $u$ of the homogenized problem ${\partial u}/{\partial t} - \div ( \mathcal B(t)\nabla u ) = f$.
DOI :
10.1007/s10492-008-0017-x
Classification :
35B27, 35B40, 35K57, 60H15, 76M35, 76M50
Keywords: multiscale; stochastic; homogenization; convection-diffusion
Keywords: multiscale; stochastic; homogenization; convection-diffusion
@article{10_1007_s10492_008_0017_x,
author = {Svanstedt, Nils},
title = {Multiscale stochastic homogenization of convection-diffusion equations},
journal = {Applications of Mathematics},
pages = {143--155},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2008},
doi = {10.1007/s10492-008-0017-x},
mrnumber = {2399903},
zbl = {1199.35017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/}
}
TY - JOUR AU - Svanstedt, Nils TI - Multiscale stochastic homogenization of convection-diffusion equations JO - Applications of Mathematics PY - 2008 SP - 143 EP - 155 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/ DO - 10.1007/s10492-008-0017-x LA - en ID - 10_1007_s10492_008_0017_x ER -
%0 Journal Article %A Svanstedt, Nils %T Multiscale stochastic homogenization of convection-diffusion equations %J Applications of Mathematics %D 2008 %P 143-155 %V 53 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-008-0017-x/ %R 10.1007/s10492-008-0017-x %G en %F 10_1007_s10492_008_0017_x
Svanstedt, Nils. Multiscale stochastic homogenization of convection-diffusion equations. Applications of Mathematics, Tome 53 (2008) no. 2, pp. 143-155. doi: 10.1007/s10492-008-0017-x
Cité par Sources :