On convergence of gradient-dependent integrands
Applications of Mathematics, Tome 52 (2007) no. 6, pp. 529-543
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study convergence properties of $\lbrace v(\nabla u_k)\rbrace _{k\in \mathbb{N}}$ if $v\in C(\mathbb{R}^{m\times n})$, $|v(s)|\le C(1+|s|^p)$, $1$, has a finite quasiconvex envelope, $u_k\rightarrow u$ weakly in $W^{1,p} (\Omega ;\mathbb{R}^m)$ and for some $g\in C(\Omega )$ it holds that $\int _\Omega g(x)v(\nabla u_k(x))\mathrm{d}x\rightarrow \int _\Omega g(x) Qv(\nabla u(x))\mathrm{d}x$ as $k\rightarrow \infty $. In particular, we give necessary and sufficient conditions for $L^1$-weak convergence of $\lbrace \det \nabla u_k\rbrace _{k\in \mathbb{N}}$ to $\det \nabla u$ if $m=n=p$.
DOI :
10.1007/s10492-007-0031-4
Classification :
35B05, 49J45
Keywords: bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence
Keywords: bounded sequences of gradients; concentrations; oscillations; quasiconvexity; weak convergence
@article{10_1007_s10492_007_0031_4,
author = {Kru\v{z}{\'\i}k, Martin},
title = {On convergence of gradient-dependent integrands},
journal = {Applications of Mathematics},
pages = {529--543},
publisher = {mathdoc},
volume = {52},
number = {6},
year = {2007},
doi = {10.1007/s10492-007-0031-4},
mrnumber = {2357579},
zbl = {1164.49305},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0031-4/}
}
TY - JOUR AU - Kružík, Martin TI - On convergence of gradient-dependent integrands JO - Applications of Mathematics PY - 2007 SP - 529 EP - 543 VL - 52 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-007-0031-4/ DO - 10.1007/s10492-007-0031-4 LA - en ID - 10_1007_s10492_007_0031_4 ER -
Kružík, Martin. On convergence of gradient-dependent integrands. Applications of Mathematics, Tome 52 (2007) no. 6, pp. 529-543. doi: 10.1007/s10492-007-0031-4
Cité par Sources :