On two-scale convergence and related sequential compactness topics
Applications of Mathematics, Tome 51 (2006) no. 3, pp. 247-262
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A general concept of two-scale convergence is introduced and two-scale compactness theorems are stated and proved for some classes of sequences of bounded functions in $L^{2}(\Omega )$ involving no periodicity assumptions. Further, the relation to the classical notion of compensated compactness and the recent concepts of two-scale compensated compactness and unfolding is discussed and a defect measure for two-scale convergence is introduced.
DOI :
10.1007/s10492-006-0014-x
Classification :
40A30, 74Q05
Keywords: two-scale convergence; compensated compactness; two-scale transform; unfolding
Keywords: two-scale convergence; compensated compactness; two-scale transform; unfolding
@article{10_1007_s10492_006_0014_x,
author = {Holmbom, Anders and Silfver, Jeanette and Svanstedt, Nils and Wellander, Niklas},
title = {On two-scale convergence and related sequential compactness topics},
journal = {Applications of Mathematics},
pages = {247--262},
publisher = {mathdoc},
volume = {51},
number = {3},
year = {2006},
doi = {10.1007/s10492-006-0014-x},
mrnumber = {2228665},
zbl = {1164.40304},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0014-x/}
}
TY - JOUR AU - Holmbom, Anders AU - Silfver, Jeanette AU - Svanstedt, Nils AU - Wellander, Niklas TI - On two-scale convergence and related sequential compactness topics JO - Applications of Mathematics PY - 2006 SP - 247 EP - 262 VL - 51 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0014-x/ DO - 10.1007/s10492-006-0014-x LA - en ID - 10_1007_s10492_006_0014_x ER -
%0 Journal Article %A Holmbom, Anders %A Silfver, Jeanette %A Svanstedt, Nils %A Wellander, Niklas %T On two-scale convergence and related sequential compactness topics %J Applications of Mathematics %D 2006 %P 247-262 %V 51 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0014-x/ %R 10.1007/s10492-006-0014-x %G en %F 10_1007_s10492_006_0014_x
Holmbom, Anders; Silfver, Jeanette; Svanstedt, Nils; Wellander, Niklas. On two-scale convergence and related sequential compactness topics. Applications of Mathematics, Tome 51 (2006) no. 3, pp. 247-262. doi: 10.1007/s10492-006-0014-x
Cité par Sources :