Sparse finite element methods for operator equations with stochastic data
Applications of Mathematics, Tome 51 (2006) no. 2, pp. 145-180
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $A\: V\rightarrow V^{\prime }$ be a strongly elliptic operator on a $d$-dimensional manifold $D$ (polyhedra or boundaries of polyhedra are also allowed). An operator equation $Au=f$ with stochastic data $f$ is considered. The goal of the computation is the mean field and higher moments $\mathcal M^1 u\in V$, $\mathcal M^2u\in V\otimes V$, $\ldots $, $\mathcal M^k u \in V\otimes \cdots \otimes V$ of the solution. We discretize the mean field problem using a FEM with hierarchical basis and $N$ degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment $\mathcal M^k u$ for $k\ge 1$. The key tool in both algorithms is a “sparse tensor product” space for the approximation of $\mathcal M^k u$ with $O(N (\log N)^{k-1})$ degrees of freedom, instead of $N^k$ degrees of freedom for the full tensor product FEM space. A sparse Monte-Carlo FEM with $M$ samples (i.e., deterministic solver) is proved to yield approximations to ${\mathcal M}^k u$ with a work of $O(M N(\log N)^{k-1})$ operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom $N$ and the number $M$ of samples. The deterministic FEM is based on deterministic equations for ${\mathcal M}^k u$ in $D^k\subset \mathbb{R}^{kd}$. Their Galerkin approximation using sparse tensor products of the FE spaces in $D$ allows approximation of ${\mathcal M}^k u$ with $O(N(\log N)^{k-1})$ degrees of freedom converging at an optimal rate (up to logs). For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for $\mathcal M^k u$ with at most $O(N (\log N)^{k+1})$ operations.
DOI :
10.1007/s10492-006-0010-1
Classification :
60H15, 65C05, 65F10, 65N30
Keywords: wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method
Keywords: wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method
@article{10_1007_s10492_006_0010_1, author = {von Petersdorff, Tobias and Schwab, Christoph}, title = {Sparse finite element methods for operator equations with stochastic data}, journal = {Applications of Mathematics}, pages = {145--180}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2006}, doi = {10.1007/s10492-006-0010-1}, mrnumber = {2212311}, zbl = {1164.65300}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0010-1/} }
TY - JOUR AU - von Petersdorff, Tobias AU - Schwab, Christoph TI - Sparse finite element methods for operator equations with stochastic data JO - Applications of Mathematics PY - 2006 SP - 145 EP - 180 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0010-1/ DO - 10.1007/s10492-006-0010-1 LA - en ID - 10_1007_s10492_006_0010_1 ER -
%0 Journal Article %A von Petersdorff, Tobias %A Schwab, Christoph %T Sparse finite element methods for operator equations with stochastic data %J Applications of Mathematics %D 2006 %P 145-180 %V 51 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0010-1/ %R 10.1007/s10492-006-0010-1 %G en %F 10_1007_s10492_006_0010_1
von Petersdorff, Tobias; Schwab, Christoph. Sparse finite element methods for operator equations with stochastic data. Applications of Mathematics, Tome 51 (2006) no. 2, pp. 145-180. doi: 10.1007/s10492-006-0010-1
Cité par Sources :