What is the smallest possible constant in Céa's lemma?
Applications of Mathematics, Tome 51 (2006) no. 2, pp. 129-144
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider finite element approximations of a second order elliptic problem on a bounded polytopic domain in $\mathbb{R}^d$ with $d\in \lbrace 1,2,3,\ldots \rbrace $. The constant $C\ge 1$ appearing in Céa’s lemma and coming from its standard proof can be very large when the coefficients of an elliptic operator attain considerably different values. We restrict ourselves to regular families of uniform partitions and linear simplicial elements. Using a lower bound of the interpolation error and the supercloseness between the finite element solution and the Lagrange interpolant of the exact solution, we show that the ratio between discretization and interpolation errors is equal to $1+\mathcal O(h)$ as the discretization parameter $h$ tends to zero. Numerical results in one and two-dimensional case illustrating this phenomenon are presented.
DOI :
10.1007/s10492-006-0009-7
Classification :
35J25, 65N15, 65N30
Keywords: supercloseness; Lagrange finite elements; Lagrange remainder; lower estimates; elliptic problems; $d$-simplex; uniform partitions
Keywords: supercloseness; Lagrange finite elements; Lagrange remainder; lower estimates; elliptic problems; $d$-simplex; uniform partitions
@article{10_1007_s10492_006_0009_7, author = {Chen, Wei and K\v{r}{\'\i}\v{z}ek, Michal}, title = {What is the smallest possible constant in {C\'ea's} lemma?}, journal = {Applications of Mathematics}, pages = {129--144}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2006}, doi = {10.1007/s10492-006-0009-7}, mrnumber = {2212310}, zbl = {1164.65495}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0009-7/} }
TY - JOUR AU - Chen, Wei AU - Křížek, Michal TI - What is the smallest possible constant in Céa's lemma? JO - Applications of Mathematics PY - 2006 SP - 129 EP - 144 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0009-7/ DO - 10.1007/s10492-006-0009-7 LA - en ID - 10_1007_s10492_006_0009_7 ER -
%0 Journal Article %A Chen, Wei %A Křížek, Michal %T What is the smallest possible constant in Céa's lemma? %J Applications of Mathematics %D 2006 %P 129-144 %V 51 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-006-0009-7/ %R 10.1007/s10492-006-0009-7 %G en %F 10_1007_s10492_006_0009_7
Chen, Wei; Křížek, Michal. What is the smallest possible constant in Céa's lemma?. Applications of Mathematics, Tome 51 (2006) no. 2, pp. 129-144. doi: 10.1007/s10492-006-0009-7
Cité par Sources :