Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners
Applications of Mathematics, Tome 50 (2005) no. 6, pp. 569-581
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Linear tetrahedral finite elements whose dihedral angles are all nonobtuse guarantee the validity of the discrete maximum principle for a wide class of second order elliptic and parabolic problems. In this paper we present an algorithm which generates nonobtuse face-to-face tetrahedral partitions that refine locally towards a given Fichera-like corner of a particular polyhedral domain.
DOI :
10.1007/s10492-005-0038-7
Classification :
51M20, 65N30, 65N50
Keywords: partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction
Keywords: partial differential equations; finite element method; path tetrahedron; linear tetrahedral finite element; discrete maximum principle; reentrant corner; Fichera vertex; nonlinear heat conduction
@article{10_1007_s10492_005_0038_7, author = {Beilina, Larisa and Korotov, Sergey and K\v{r}{\'\i}\v{z}ek, Michal}, title = {Nonobtuse tetrahedral partitions that refine locally towards {Fichera-like} corners}, journal = {Applications of Mathematics}, pages = {569--581}, publisher = {mathdoc}, volume = {50}, number = {6}, year = {2005}, doi = {10.1007/s10492-005-0038-7}, mrnumber = {2181027}, zbl = {1099.65105}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/} }
TY - JOUR AU - Beilina, Larisa AU - Korotov, Sergey AU - Křížek, Michal TI - Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners JO - Applications of Mathematics PY - 2005 SP - 569 EP - 581 VL - 50 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/ DO - 10.1007/s10492-005-0038-7 LA - en ID - 10_1007_s10492_005_0038_7 ER -
%0 Journal Article %A Beilina, Larisa %A Korotov, Sergey %A Křížek, Michal %T Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners %J Applications of Mathematics %D 2005 %P 569-581 %V 50 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1007/s10492-005-0038-7/ %R 10.1007/s10492-005-0038-7 %G en %F 10_1007_s10492_005_0038_7
Beilina, Larisa; Korotov, Sergey; Křížek, Michal. Nonobtuse tetrahedral partitions that refine locally towards Fichera-like corners. Applications of Mathematics, Tome 50 (2005) no. 6, pp. 569-581. doi: 10.1007/s10492-005-0038-7
Cité par Sources :